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Abstract. We analyse in some detail a recently proposed uansfer matrix mean-field approximation 
which yields the exact cndcal point for several two-dimensional nearest-neighbour king models. 
For the square lattice model we show explicitly that this approximation yields not only the exact 
criticalpoint, butalsotheexactbaundary magnetization ofasemi-infinite Isingmodel, independent 
of the size of the strips used. ?ben we develop a new meamfield renormalization-pup strategy 
based on this approx idon  and make wnnections with finite size scaling. Applying our strategy 
to thequadratic Isingandthree-state Pots models we obt3inresultsfor thecriticalexponents which 
are invery good agreement with the exact ones. In this way we also clarify some advantages and 
limitations of the mean field renormalization p u p  approach. 

1. Introduction 

A recently proposed [l] transfer matrix version of a mean-field approximation (which in the 
following will be denoted by LS) applied to several nearest neighbour king models in two 
dimensions, gave surprisingly exact results for the critical points, even without extrapolation, 
and very good results, under extrapolation. for more complicated models. 

A first issue to address in connection with the LS approximation is why the results are exact 
in the NN Ising case and extrapolate accurately in the others, and whether extra exact results 
can be obtained by this scheme. 

We want also to.claify what is the connection of this method with other techniques of 
more common use in two-dimensional statistical mechanics. In particular: 

(i) since the method involves consideration of ships similar to those used, e.g. in finite size 
scaling (FSS) and phenomenological renormalization approaches [2]. it is legitimate to ask 
up to which extent the LS approximation is connected to these approaches and possibly fits 
within them: 

(ii) since the method uses as a basic ingredient effective fields on the boundary of the ships, it 
is also rather natural to look for connections with the so-calledmean-field renormalization- 
group [3] (MFRG) approach. This will go together with showing how critical exponents 
can be obtained in this context. 

The plan of the paper is as follows: in section 2 we give a brief review of the LS 
approximation and show, in the square lattice king case, that it gives not only the exact critical 
point, but also the exact boundary magnetization of a semi-infinite Ising model, independent 
of the size of the ships used; in section 3 we show how the LS approximation fits into a MFRG 
structure, develop a procedure for calculating the critical exponents, and compare the method 
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with the FSS approach; in section 4 we give two test applications of the procedure above, on 
the two-dimensional king and three-state Potts models. Finally, in section 5 ,  we draw some 
conclusions. 

2. The LS approximation 

The LS approximation scheme [l] makes use of two infinite strips S, and Sn, of widths n and n’ 
respectively, with periodic boundaryconditions alongthe infinite direction. The approximation 
is obtained by applying an effective field h,s at one side of the ships and by imposing the 
consistency relation 

~~ 

m d K ,  h,d = m d K , h e d  (1) 

where m,, and mln, are the values of the order parameter at the opposite side of the strips and 
K = j3 J > 0 is the exchange interaction strength. Equation (1) has to be solved for he* at 
fixed K and the critical temperature is the one for which the paramagnetic solution he# = 0 
bifurcates into non-zero solutions, leading to spontaneous magnetization. 

This method, as pointed out by Lipowski and Suzuki [l], yields the exact critical 
temperature of the king model with nearest-neighbour interaction on many two-dimensional 
lattices (square, triangular, honeycomb and centered square), and very accurate estimates of 
the critical temperature of more complicated models (Ising model with alternating strength of 
interaction, with next-nearest-neighbour interaction, S > 1 models). 

In the present section we will show, resorting to a result by Au-Yang and Fisher [4], that 
at least in the simplest case of the nearest-neighbour king model on the square lattice the 
LS approximation yields not only the exact critical temperature, but also the exact boundary 
magnetization of the semi-infinite model. 

Let us consider an Ising model on a strip S, of a square lattice, number from 1 to n the 
chains which form the strip and apply a magnetic field h, on the nth chain. The corresponding 
Hamiltonian will be 

where si,j = i1 is an king spin located at the site with coordinates i and j in the x and y 
direction respectively. The magnetization ml, = ml,(K, h,) = (si.,) has been calculated for 
n 2 2 by Au-Yang and Fisher in [4], and is given by 

In (3) we have adopted the same notation as [4], i.e. 

z‘ = tanh h, 

t‘ = 1 - sinh2K 
F=t‘(l  +t’z)L/Z = i(coth2K -~0sh2K)  

(2 sinh2K)’/’ 

~ ~ = ( 2 + t ‘ Z ) 1 ~ Z ( 1 + t ‘ 2 ) ’ ~ 2 - ~ f 1  =cosh2K& 1 
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For K > K, = $ln(l + a) it is easily realized that if h. is chosen in such a way that 
i+ S+Z" = -i, i.e. 

cosh2K -coth2K ( coshZK+I 
z'=tanhh,= 

then the quantity in square brackets in (3) equals 1, independent of n, and one has 

(cosh2K - coth 2K 
mi,(K. h,) mi(K) = cosh2K - 1 

(4) 

where ml(K)  is the exact boundary magnetization of the two-dimensional semi-infinite Ising 
model [SI. Furthermore, for K < K,, choosing h, = 0 yields m l ( K )  = 0, again independent 
ofn. 

The case n = 1, for which (3) is not valid, can be easily solved by the transfer matrix 
method, giving 

which again equals ml(K)  if hl is chosen according to (4). 
These results imply that, no matter which n,  n' we choose. the bifurcation at hes = 0 will 

always occur at the exact critical point, K = K,. This mechanism is at the basis of the results 
of [l] for the square lattice case, and we believe that the same should work for the other, two 
dimensional lattices. 

Finally, if, fully in the spirit of aclassical approach, weconsider thenon-zero magnetization 
solution in (1) for K > K,, by putting h,f = h, we obtain the exact spontaneous boundary 
magnetization ml. independent of n, n'. This was not noticed in [I]. 

The following remarks are in order for an explanation of the above results. First of all, 
the boundary magnetization is known to behave as m,(K)  x (K - Kc)@' for K -+ K,+ with 

= $, in the 2D king model. The exponent p1 = [5] is such that it can be reproduced 
exactly by a self-consistent approach like the Ls  approximation, making use of an effective 
field. When considering models with bI values incompatible with a classical scheme, one has 
to consider the Ls approach and its possible extensions and approximations, as we will discuss 
in the next sections. 

As shown in [6], in the context of a generalized cluster variation approach to two- 
dimensional lattice models, the double strip & is able to contain all of the information needed 
to solve exactly the two-dimensional NN Ising model. n e  problem then reduces to how such 
information can be extracted. Clearly what we presented in this section amounts to a relatively 
simple way of obtaining part of this information. 

3. Mean field renormalization group and linite size scaling 

Let us now see how the LS approximation can be used to develop a new MFRG strategy, where. 
the boundary magnetization is used together with the bulkone as an effective scaling operator. 
This will also be useful in understanding the relations of the Ls method with FSS. 

The notation applies.to an king model for convenience, but the strategy is not limited to 
this case, as will beshown in the next section where it will be used to investigate the three-state 
Potts model. 
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For infinite Ising strips of widths n and n’, FSS implies the following scaling law for the 
singular part of the bulk free-energy density f@): 

f f ” ( l ” 6 ,  P h )  = t ‘ f , ’ (~,  h )  (7) 

where E = (c - T)/T,, e = n/n‘ is the rescaling factor, and d is the bulk dimension. If the 
boundary conditions arc open, for the singula~ part of the surface free energy density, f ( s ) ,  the 
relation 

f,?(l”~, 2*h, LWb) = td-lf,?(c. h ,  b) (8) 

holds, where b indicates a surface field. 

magnetization 
The basic idea of the MFRG [3] is to derive from (7) the scaling relation for the bulk 

m,,(K’, h’) = t d - * m , ( ~ ,  h)  (9) 

where h’ = LYHh and K‘ = K’(K) is a mapping in the Wilson-Kadanoff sense, determined 
implicitly, in the limit of h going to zero, on the basis of (9). From this mapping the critical 
point K, and the thermal exponent y~ can be obtained by means of the relations K, = K‘(K,) 
and .P = g(K = Kc). 

Applying this idea to the surface magnetization yields 

m d K ,  h ,  b)  (10) mlni(K’, h’, b’) = L d - 1 - W  

where b‘ = P S b  if we want b to scale as a surface field. On the other hand, the equation 
for the critical point which is characteristic of the LS approximation would be recovered if b 
scaled as a magnetization, i.e. with an exponent d - 1 - y ~ s .  In fact, with this assumption, 
setting h = 0 and linearizing in b yields 

which implicitly defines a mapping K‘(K).  The equation 

K, = K‘(K,)  (12) 

with K’(K) given by (11) is equivalent to the equation for the critical point in the LS 
approximation. So this approximation can also be seen as a realization of a MFRG strategy as 
far as determination of Kc is concerned. 

In a MFRG spirit one can also determine the critical exponents, since fi is obtained by the 
relation 

Linearizing (9) with respect to h,  with K = Kc yields 

(13) 

from which y~ can be obtained and finally, linearizing (10) in the same way, with b = 0, yields 
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from which ym is obtained. 
The set of equations (1 l t ( l 5 )  is a MFRG procedure to determine critical point and critical 

exponents. 
Nevertheless, the procedure above (to be denoted by M, for 'magnetization', in the 

following) is not a rigorous application of FSS. In such an application (1 1) should be replaced 

. , .  . . 

by 

since b should scale as a field, with exponent y ~ ~ ,  and should be solved in conjunction with 
(14h(15). This alternative and more rigorous procedure will be denoted by F, for 'field', in 
the following. 

F is in fact the procedure of MFRG proposed in [3] to yield simultaneously bulk and surface 
exponents. It~is interesting to investigate how M, proposed here, being more consistent with 
the effective field idea, compares with F. 

Two comments are in order: 

(i) The two procedures should give the same value of K, @ut not of the exponents) in the limit 
n, n' + O O , ~  -+ 1, since the two derivatives in (11) are analytic functions; this should 
justify the LS approximation in ~ F S S  context. 

(ii) In the two-dimensional NN Ising case, y ~ s  = exactly and then, in the limit above, the 
critical exponents should also be the same for both procedures M and F. 

In the following section we will check these ideas on the two-dimensional NN king and 
three-state Potts cases.. 

4. Results and discussion 

In the present section we give two test applications of our new MFRG strategy (M), to the 
king and three-state Pons models on square lattices. We also compare our results with those 
obtained treating b as a surface field, i.e. letting it scale with exponent y ~ s .  We start by 
applying procedure M to the king model. In the Ising case, we have already shown that the 
method gives the exact critical point for any n, n'. Furthermore, resorting to (3), the mapping 
K' = F(K) can be determined analytically in an~implicit form. AS a result one gets 

f n W )  = f"W) (17) 

where 

1 1'2 1 + tanh(2n sinh-'It'j) 
1 - tanh(2n sinh-' It']) 

f " ( K )  = K cothK 

and with t' as above. It can be checked that the fixed point of (17), obtained by setting t' = 0, 
is K* = 4 ln(1 + a), while for the thermal exponent one has 

1 + 2(2n - 1)K* em 
1 + Z(2n' - 1)K* 
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Table 1. Results forthe Ising model (b = magnetization). 
~~ 

II M YH YHS 
2 0.95738 1.60287 0.60287 
3 0.973 IO 1.680 92 0568 08 
4 0.98089 1.72197 0.55099 
5 0.98514 1.74793 0.54067 
6 0.987 85 1.766CU 0.533 74 
7 0.98969 1.77937 0.52873 
8 0.991 06 1.78970 0.52496 

Extrapolated 0.99977 1.87201 0.49764 

emct 1 1.875 0.5 

which, in the limit n, n' + 03, yields y~ = 1, which is again an exact result. 
The calculation of the magnetic exponents Cannot be carried out analytically since no 

solution is available for the bulk magnetization of a strip in the presence of a bulk magnetic 
field, and we have to proceed numerically as follows: given the strip S, with a bulk magnetic 
field h and an auxiliary magnetic field hl acting on the first chain. we determine its partition 
function Z,,(K,  h ,  hl) as the largest eigenvalue of the Zn x 2" transfer matrix with elements 

The bulk and boundary magnetizations will then be given by 

m, m,(K, h)  = -- 

and 

respectively. Finally, y~ and y ~ s  are determined according to (14)-(15). 
Intablel wereporttheresultsforthecriticalexponentsforstripwidths2 6 n = n'+l < 8 

(n = n' + 1 is always the most convenient choice). The extrapolations are based on least- 
squares fits with fourth-order polynomials in l /n  and are certainly justified since the critical 
exponents are nearly linear functions of 1 I n .  The agreement of the extrapolated data with the 
exact results is very good, and the errors are within 0.2%. 

The Ising test has yielded very promising results, but does not shed much light on the 
physical meaning of the effective parameter b, since for the two-dimensional king model 
surface magnetization and surface field scale with the same exponent d - 1 - YHS = y ~ s  = $. 
In fact, procedure F, in which b scales as a surface field, also yields very good results (apart 
from having no solution~when n = 2), as shown in table 2. Here the extrapolations are based 
on the so-called alternating +algorithm [2,11]. Data from the two procedures are plotted 
together in figures 1-4. As expected, all the results seem to be equivalent in the limit n -+ 03. 

In view of the above considerations, we believe that a more conclusive test is in order, 
and a suitable model should be the three-state Potts model. Indeed, in two dimensions, this 
model is known to undergo a second-order phase transition, whose critical point and critical 
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Table 2 Results for the Ising model (b = field). 
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n 

3 
4 
5 
6 
7 
8 

Extrapolated 
Exact 

KC Yr 
0.52903 . 0.96548 
0.48065 0.97840 
0.46366 0.98404 
0.45560 0.98726 
0.451 13 0.98938 
0.44839 0.99086 
0.44087 1.M1620 

0.44069 1 

YH YHS 

1.99012 0.91150 
1.91195 0.77040 
1.88570 0.70267 
1.87397 0.66195 
1.86794 ~ 0.63455 
1.86461 0.61482 
1.85853 0.49681 

1.875 0.5 

0.42 O ' @ M  0.1 0.2 0.3 0.4 0.5 

0 
I/" 

Figure 1. The king critical point Kc "ems l i n  as given 
by the M (full curve) and F (broken curve) procedures. 

11" 

Figure 3. The king magnetic exponent YH versus 1111 
as given by the M (full curve) and F (broken curve) 
procedwes. 

0.1 0.2 0.3 0.4 0.5 0.951 ' " ' ' ' ' " 1 . o  
lln 

Figure 2. The The Ishg thermal exponent yr versus 
.I/" as given by the M (full curve) and F (broken curve) 
procedures. 

3 Y o.:_I 0.8 ,,' I 

,I' 

0.7 
,/' 

,,,' 
0.6 

0.1 0.2 0.3 0.4 0.5 oso 
11" 

Figure 4. The Ising surfare magnetic exponent y ~ s  
versus I l n  as given by the M (fuU curve) and F (broken 
curve) pmcedwes. 

exponents are known exactly [7-IO], even in the absence-of a full solution. In psrticular it has 
YHS # $. .~ 

The Hamiltonian of the q-state Potts model [7] is 

where the variables si take on values 0, I. . . . q - 1, K > 0 is the interaction strength and h is 
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Table 3. Results for the fhree-state Potts model (b = magnetization). 

n YI K C  

2 0.71318 1,10152 
3 0.69762 1.121 18 

~~ 

4 0.690 13 1.13209 
5 0.68574 1.13978 
6 0.68287 1.14496 
7 0:68084 1.14993 
8 0.67935 1.15159 
Extrapolated 0.66901 1.17448 
Exact 0.67004 1.2 

YH 

1.609 16 
1.69079 

- 

1.73652 
1.76704 
1.78923 
1.80629 
1.81991 
1.91210 
1.86667 

FS~. ,. 

'0.609 16'  ' 
0.569 66 
0.54785 
0.533 50 
0.523 17 
0.51526 
0.509 1 I 
0.46998 
0.33333 

Table 4. Results for the three-stale Pons model (b =field) 

" 
3 
4 
5 
6 
7 
8 
Extrapolated 
Exact 

Q 
0.789 99 
0.726 12 
0.703 02 
0.691 84 
0.68555 
0.681 65 
0.67072 
0.67004 

yr YH 

1.12871 1.96588 
1.14060 1.88767 
1.14627 . 1.86166 
1.15025 1.85030 
1.15541 1.84477 
1.15731 1.841 94 
1.15536 1.83837 
1.2 1.86667 

YHS 

0.87340 
0.720 35 
0,64290 
0.594 17 
0.560 I8 
0.53483 
0.365 87 
0.333 33 

a magnetic field. The order parameter of the model, corresponding to the Ising magnetization, 
is 

(24) 

In the case q = 2 one recovers the king model. 
The MFRG scheme developed above can be carried over to the q-state Potts model without 

any substantial modification, and we will apply it to the case q = 3. The main new fact is that 
no analytical results like (3) are available for the threestate Potts model. So all calculations 
must be performed numerically with the transfer matrix method. The order of the transfer 
matrix is now 3" and increases more rapidly than in the king case. However, the transfer 
matrix is invariant with respect to the transformation which interchanges the states si = 1 and 
si = 2 (all other symmetries are lost as soon as one introduces the surface fields), and the 
eigenvector corresponding to its largest eigenvalue belongs to the symmetric subspace of this 
transformation. Thus we can limit ourselves to matrices acting in this subspace, which are of 
order (3" + 1)/2. In this way we have been able to deal with strips up ton = 8. 

The numerical results for procedureM are reported in table 3. The extrapolation is obtained 
by fitting data in a least-square sense with a second-order polynomial in l/n. Even if now 
the critical point is not given exactly by the LS approximation, we obtain excellent agreement 
with the exact results (errors within 2.5%) for the bulk critical point and exponents, while, in 
comparison, the results for the surface exponent Y H S  are rather poor. 

In table4 wereportthe results obtainedfromprocedurel? Thesituationisdifferentfromthe 
previous one: the errors of the extrapolated critical point and bulk exponents are within 3.8% 
and the error for the surface exponent is within 10%. In particular, the estimate for the 
surface critical exponent is comparable with the value 0.343 obtained by phenomenological 
renormalization in [12]. Results from the two procedures are plotted together in figures 5-8. 
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1.18 0.76 
1.17 

0.74 1.16 

0.72 

0.7 

d 
1.14 

1.13 '.. 
1.12 

0.68 1.11 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 l.1 0 0.05.0.1 0.15 0.2 0.25 0.5 0.35 0.4 0.45 
l in  11" 

5 

Figure S. The three-state Pot& critical point K, versus 
l i n  as &en by the M (full curve) and F (broken curve) 
procedures. curve) procedures. 

F i y r e  6. The three-state Potts thermal exponent yr 
versus l i n  as given by the M (full curve) and F (broken 

1.9 

1.85 

E 1.8 

1.75 

1.7 

1.65 

"0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05  
I . , . . . . . . I 
0.0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

11" 11" 

Fignw 7. The three-state Potts magnetic exponent y~ 
versus l l n  as given by the M (full curve) and F (broken 
curve) procedures. 

Figure 8. The three-state Potts surface magnetic 
exponent YHS versus 1 f n  as given by the M (full curve) 
and F (broken curve) procedures. 

There is strong evidence that F is the correct procedure when n is large, but for small 
strips M, although not rigorous, seems to work very well: indeed, if y~ had been extrapolated 
on the basis of the results for 2 < n $ 5 one would have obtained 1.868, which is two orders 
of magnitude more accurate than the extrapolation on the whole set of data 

5. Conclusions 

We have analysed in some detail the Ls approximation, showing that in the two-dimensional hw 
Ising case, it yields not only the exact critical point, but also the exact boundary magnetization 
of the semi-infinite model, independent of the size of the ships used. We have also proposed 
an explanation of these surprising results. 

The LS approximation has been used to develop a new MFRG strategy (procedure M) which 
yielded very accurate results for the critical exponents of the Ising and three-state Potts models 
in two dimensions. When compared with rigorous FSS (procedure F) our new strategy has 
proven to be particularly suitable for applications where relatively smal1,ships are used, while 
for larger strips our results indicate quite clearly that F is the correct procedure. 
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