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Abstraet. We analyse in some detail a recently proposed transfer matrix mean-field approximation
which yields the exact eritical point for several two-dimensional nearest-neighbour Ising models.
For the square lattice model we show explicitly that this approximation yields not only the exact
critical point, but also the exact boundary magnetization of a semi-infinite Ising model, independent
of the size of the strips used. Then we develop a new mean-field renormalization-group strategy
based on this approximation and make counections with finite size scaling. Applying our strategy
tothe quadratic Ising and three-state Potis models we obtain results for the critical exponents which
are in very good agreement with the exact ones. In this way we also clarify some advantages and
limitations of the mean field renormalization group approach.

1. Introduction

A recently proposed [1] transfer matrix version of a mean-field approximation (which in the
following will be denoted by LS) applied to several nearest neighbour Ising models in two
dimensions, gave surprisingly exact results for the critical points, even without extrapolation,
and very good results, under extrapolation, for more complicated models.

A first issue to address in connection with the LS approximation is why the results are exact
in the NN Ising case and extrapolate accurately in the others, and whether extra exact results
can be obtained by this scheme,

We want also to clarify what is the connection of this method with other techniques of
mote common use in two-dimensional statistical mechanics. In particular:

(i} since the method involves consideration of strips similar to those used, e.g. in finite size
scaling (F$s) and phenomenological renormalization approaches [2]. it is legitimate to ask
up to which extent the LS approximation is connected to these approaches and possibly fits
within them;

(ii} since the method uses as a basic ingredient effective fields on the boundary of the strips, it
is also rather natural to look for connections with the so-called mean-field renormalization-
group [3] (MFRG) approach. This will go together with showing how critical exponents
can be obtained in this context.

The plan of the paper is as follows: in section 2 we give a brief review of the LS
approximation and show, in the square lattice Ising case, that it gives not only the exact critical
point, but also the exact boundary magnetization of a semj-infinite Ising model, independent
of the size of the strips used; in section 3 we show how the LS approximation fits into a MERG
structure, develop a procedure for calculating the critical exponents, and compare the method
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with the FSS approach; in section 4 we give two test applications of the procedure above, on
the two-dimensional Ising and three-state Potts models. Finally, in section 5, we draw some
conclusions. ,

2. The LS approximation

The LS approximation scheme [ 1] makes use of two infinite strips S, and &, of widths » and »’
respectively, with periodic boundary conditions along the infinite direction. The approximation
is obtained by applying an effective field A at one side of the strips and by imposing the
consistency relation .

Min(K, hetr) = min (K, hegs) )

where #11, and mp,y are the values of the order parameter at the opposite side of the strips and
K = BJ > 0is the exchange interaction strength. Equation (1) has to be solved for /s at
fixed K and the critical temperature is the one for which the paramagnetic solution fee = 0
bifurcates into non-zero solutions, leading to spontaneous magnetization,

This method, as pointed out by Lipowski and Suzuki [1], yields the exact critical
temperature of the Ising model with nearest-neighbour interaction on many two-dimensional
lattices (square, triangular, honeycomb and centered square), and very accurate estimates of
the critical temperature of more complicated models (Ising model with alternating strength of
interaction, with next-nearest-neighbour interaction, § 2 1 models).

In the present section we will show, resorting to a result by Au-Yang and Fisher [4], that
at least in the simplest case of the nearest-neighbour Ising model on the square lattice the
LS approximation yields not only the exact critical temperature, but also the exact boundary
magnetization of the semi-infinite model.

Let us consider an Ising model on a strip &, of a square Jattice, number from 1 to n the
chains which form the strip and apply a magnetic field &, on the nth chain. The corresponding
Hamiltonian will be

+oo n—1
—-BH=K Z Z(S!_fsl'l'l_,l +S:jslj+l)+K Z StaSivin T Ra Z Sin 2
=—o0 f=l f=—00 i=—c0

where 5; ; = 1 is an Ising spin Jocated at the site with coordinates { and j in the x and y
direction respectively. The magnetization my, = m,(K, s} = {s5;) has been calculated for
n 2 2 by Av-Yang and Fisher in [4], and is given by

@)

E+)/2[ [F| — 7 tanh(2n sinh™!|¢']) }”2

min (K, By = — -
tn( )= ( 7| + F + ExzM)tanh(2n sich™! ']

In (3) we have adopted the same notation as [4], i.e.

z’——~tanhh,1
1 —sinh2K -
f = ﬁﬁ F=1'(1+1)Y? = Lcoth2K — cosh2K)

L=+ PA+ 2 _FE 1 =cosh2K 1.
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For K > K; = %In(l + 4/2} it is easily realized that if h, is chosen in such a way that
i+ E.,.Z’z = —E, ie.

— tanh A — cosh2K — coth2& \ /* @

N " cosh2K + I
then the quantity in square brackets in (3) equals 1, independent of #, and oné has

cosh2K — coth 2K\ /*
2 (K. hy) = K)= ‘
mn (K. ) = mi(K) ( cosh 3K —1 ) (5)

where m;(K) is the exact boundary magnetization of the two-dimensional semi-infinite Ising
model [5]. Furthermore, for ¥ < K., choosing k, = 0 yields m;(K) = 0, again independent
of n.

The case n = 1, for which (3) is not valid, can be easily solved by the transfer matrix
method, gmng :

sinh Ay

(6)
" (sinh?hy + &% )]”2

my (K, ) =

which again equals m; (K) if A1 is chosen according to (4).

These results imply that, no matter which #n, n’ we choose. the bifurcation at ¢ = 0 will
always occur at the exact critical point, K = K. This mechanism is at the basis of the results
of {17 for the square lattice case, and we believe that the same should wark for the other two
dimensional lattices.

Finally, if, fully in the spiritof aclass lCE] approach, we con51der the non-zero magnetization
solution in (1} for X > X, by putting %y = #, we obtain the exact spontancous boundary
magnetization 4. independent of 7, n’. This was not noticed in [1].

The following remarks are in order for an explanation of the above results. First of all,
the boundary magnetization is known to behave as m, (K) =~ (K — K)f for K — K} with
B = %, in the 2D Ising model. The exponent 8; = % [3] is such that it can be reproduced
exactly by a self-consistent approach like the LS approximation, making use of an effective
field. When considering models with 8; values incompatible with a classical scheme, one has
to consider the LS approach and its possible extensions and approximations, as we will discuss
in the next sections.

As shown in [6], in the context of a generalized cluster variation approach to two-
dimensional lattice models, the double strip &; is able to contain all of the information needed
to solve exactly the two-dimensional NN Ising model. The problem then reduces to how such
information can be extracted. Clearly what we presented in this section amounts to a relatively
simple way of obtaining part of this information.

3. Mean field renormalization group and finjte size scaling

Let us now see how the LS approximation can be used to develop 2 new MFRG strategy, where_
the boundary magnetization is used together with the bulk one as an effective scaling operator.
This will also be useful in understanding the relations of the LS method with FsS.

The notation applies to an Ising model for convenience, but the strategy is not limited to
this case, as will be.shown in the next section where it will be used to investigate the three-state
Potts model.
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For infinite Ising strips of widths z and #’, FSS implies the following scaling law for the
singular part of the bulk free-energy density F®:

I @re, uhy = 2 £ (e, h) (7)

where € = (T, — T)/T;, £ = n/r’ is the rescaling factor, and 4 is the bulk dimension. If the
boundary conditions are open, for the singular part of the surface free energy density, &, the
relation

O ere, gh, 7By = ¢4 £9e, b, b) (®)

holds, where b indicates a surface field.
The basic idea of the MFRG [3] is to derive from (7) the scaling relation for the bulk
magnetization

mp (K’ B = 8 Mm, (K, h) 9

where 2’ = £¥1p and K’ = K'(K) is 2 mapping in the Wilson—Kadanoff sense, determined
implicitly, in the limit of k going to zero, on the basis of (9). From this mapping the critical
point K and the thermal exponent yr can be obtained by means of the relations K: = X'(K.)
and &7 = (K = K,).

Applying this idea to the surface magnetization yields

miw (K B, B = 0871 (K, B, B) (10)

where b’ = £¥pb if we want b to scale as a surface field. On the other hand, the equation
for the critical point which is characteristic of the LS approximation would be recovered if &
scaled as a magpetization, i.e. with an exponent d — 1 — yus. In fact, with this assumption,
setting 4 = O and linearizing in b yields

amyy

amln
— (K, 0,00 =
ay’ (K.0.0) ab

which implicitly defines a mapping K’'(K). The equation

(K,0,0) (i1}

Kc = K’(Kc) (12)

with K'(K) given by (11) is equivalent to the equation for the critical point in the LS
approximation. So this approximation can also be seen as a realization of a MFRG strategy as
far as determination of X is concerned.

In a MFRG spirit one can also determine the critical exponents, since yr is obtained by the
relation

’
£ = 9K . (13)
0K |x=x.
Linearizing (9) with respect to &, with K = K vields
omy Ao 3
K = M —— (K, 0 4
3h'( e 0) 8h( e 0) (14)

from which yy can be obtained and finally, linearizing (10) in the same way, with b = 0, yields

r a
3;’;: (Kc,. 0, O) — ‘Ed—'l—y}ls-}'ﬂ _;..:_H(Kc, 01 0) (15)
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from which yyg is obtained.

The set of equations (113(15) is a MFRG procedure to determme critical point and critical
exponents.

Nevertheless, the procedure above (to be denoted by M, for ‘magnetization’, in the
following) is not a rigorous application of F$S. In such an application (11) should be replaced
by -

O (gt 0, ) = gd—1-2ms am"’(f{ 0,0) ' (16)

3y
ab’

since b should scale as a field, with exponent yys, and should be solved in conjunction with
(14)-(15). This alternative and more rigorous procedure will be denoted by F, for ‘field’, in
the following.

Fis in fact the procedure of MFRG proposed in [3] to yield simultanecusly bulk and surface
exponents. It is interesting to investigate how M, proposed here, being more consistent with
the effective field idea, compares with F.

Two comments are in order:

(1) The two procedures should give the same value of K, (but not of the exponents) in the limit
#,n — oo, £ — 1, since the two derivatives in (11) are analytic functions; this should
justify the LS approximation in a FSS context,

(ii} In the two-dimensional NN Ising case, yys = % exactly and then, in the limit above, the
critical exponents should also be the same for both procedures M and F.

In the following section we will check these ideas on the two-dimensional NN Ising and
three-state Potts cases..

4, Results and discussion

In the present section we give two test applications of cur new MFRG strategy (M), to the
Ising and three-state Potts models on square lattices. We also compare our results with those
obtained treating b as a surface field, i.e. letting it scale with exponent ygs. We start by
applying procedure M to the Ising model. In the Ising case, we have already shown that the
method gives the exact critical point for any n, ', Furthermore, resorting to (3), the mapping
K' = K’'(K) can be determined analytically in an implicit form. As a result one gets

K'Y= fu(K) an

where

1+ tanh(2n sinh™"|¢') } vz

1 — tanh(2n sinh™!|#'}]) (1%

£l K) = K cothK [

and with t’ as above. It can be checked that the fixed point of (17}, obtained by setting ¢’ = 0,
s K* =1 5 In(1 + ~/2), while for the thermal exponent one has

14+22n - DK™
1+202n — DK*

y— (19)
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Table 1. Results for the Ising model (f = magnetization).

by YH yus

0.95738 1.60287 (.002 87
0.97310 1.68092  0.56808
0.98089 1.72197 0.55059
0.98514 1.74793 0.540 67
0.98785 1.766 00 0.53374
0.93969 L77937 0.52873
0.991 06 L.78970 0.524 96

Extrapolated  0.99977 1.87201 049764
Exact 1 1.875 0.5

L= B RV SL I S

which, in the limit #, #° — o0, yields y1 = 1, which is again an exact result.

The calculation of the magnetic exponents cannot be carried out analytically since no
solution is available for the bulk magnetization of a strip in the presence of a bulk magnetic
field, and we have to proceed numerically as follows: given the strip &, with a bulk magnetic
field # and an auxiliary magnetic field k1 acting on the first chain, we determine its partition
function Z,(K, k, k1) as the largest eigenvalue of the 2” x 2* transfer matrix with elements

n—1

K - B hy
Tr{{s;}, {5;}) = exp [? Z(sjsj+1 + st + K ;{: 8587 + 3 J_Z:l:(s,- +5) + 7{51 + 54 ):' .

j=1
(20)
The bulk and boundary magnetizations will then be given by
1 32,
= K, n) = - 21
my = my(K, k) nZy 3 |y (21)
and
18Z,
min = mi.(K, ) Z, 1 Uy o (22)

respectively. Finally, yy and yyg are determined according to (14)—(15).

In table 1 we report the results for the eritical exponents forstrip widths2 < n =n'4+1 g 8
{(n = n’ 4 1 is always the most convenient choice). The extrapolations are based on least-
squares fits with fourth-order polynomials in 1/7 and are certainly justified since the critical
exponents are nearly linear functions of 1/#. The agreement of the extrapolated data with the
exact results is very good, and the errors are within 0.2%.

The Ising test has yielded very promising results, but does not shed much light on the
physical meaning of the effective parameter &, since for the two-dimensional Ising model
surface magnetization and surface field scale with the same exponent d — 1 — yus = yns = %
In fact, procedure F, in which b scales as a surface field, also yields very good results (apart
from having no solution when n = 2), as shown in table 2. Here the extrapolations are based
on the so-called alternating e-algorithm [2,11]. Data from the two procedures are plotted
together in figures 1-4. As expected, all the results seem to be equivalent in the limit # — 0.

In view of the above considerations, we believe that a more conclusive test is in order,
and a suitable model should be the three-state Potts model. Indeed, in two dimensions, this
model is known to undergo a second-order phase transition, whose critical point and critical



Figure 1. The Ising critical point K versus 1/n as given
by the M (full curve) and F (broken curve) procedures.
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Table 2, Resulis for the Ising model (b = field).
n K T YH Yus
3 052903 . 0.96548 1,950 12 0.91150
4 0.48065 0.97840 191195 0.77040
5 0.463 66 0.98404 1.88570 0.70267
6 0.45560 0.98726 1.87397 0.66195
7 045113 0.98238 186794 063455
8 0.44839 0.99086 1.86461 0.61482
Extrapolated 0.44087 1.00620 1.85853 0.49681
Exact 0.44069 1 1.875 0.5
i 1
0524 I
009}
0.5} 4
0.48 0.58}
046} 097}
0.4 [
0.96]
0420 -
0 0.1 0.3 0.3 04 s 0% 01 0.2 5.3 04 0.5
In I/n

Figure 2. The The Ising thermal exponent yr versus

procedures,

-1/n as given by the M (full curve) and F (broken curve}

0.3

Yus

0.7}

0.6

0.5

1/n

0.4 0.3

Figure 3. The Ising magnetic exponent yg versus 1/n
as given by the M (full curve) and F (broken curve}
procedures.

Figure 4. The Ising surface magnetic exponent yms
versus | /n as given by the M (full curve) and F (broken
curve} procedures.

exponents are known exactly [7—10], even in the absence of a full solution. In particular it has

Yrs # 3

The Hamiltonian of the g-state Potts model [7] is

- K
r - ISH — '-"—1 Z(qﬁshgj
9=

h
—1>+F2(qas,o— D

(23)

where the variables s; take on values 0,1,...qg =1, K > 0is the interaction strength and % is
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Table 3. Results for the three-state Potts model (5 = magnetization).

K »r ¥H yus

0.71318 110152 160916  0.60916°
0.69762 1.12118 1.6907%  0.56966
0.69013 1.13209 173652  0.54785
0.68574 1.13978 176704 0.53350
0.68287 1.14496 1.78923 0.52317
0.680 84 1.14993 1.80629 0.51526
067935 1.15159 1.81991 0.50011

Extrapolated 066901 1.17448 191210  0.46998
Exact 0.67004 1.2 1.86667 0.33333

OO ~J U B R

Table 4. Results for the three-stata Potts model (5 = ﬁeld).

Ke )T YH Yus

0.78999 1.12871 1.96538 0.87340
0,726 12 1.14060 1.887 67 0.72035
0.70302 1.14627 ~ 1.86166 0.64290
0.691 34 1.15025 1.85030 0.594 17
0.68555 1.15541 1.84477 056018
0.68165 1.15731 1.84194 0.534 83

Extrapolated 067072 _1.15536 1.83837 (.36587
Exact 0.67004 1.2 1.866 67 033333

o0 =Y th th W]

a magnetic field. The order parameter of the model, corresponding to the Ising magnetization,
is

m=‘i%"il1__1. . (24)

In the case ¢ = 2 one recovers the Ising modei.

The MFRG scheme developed above can be carried over to the g-state Potts model without
any substantial modification, and we will apply it to the case g = 3. The main new fact is that
no analytical results like (3) are available for the three-state Potts model. So all calculations
must be performed numerically with the transfer matrix method. The order of the transfer
matrix is now 3" and increases more rapidly than in the Ising case. However, the transfer
matrix is invariant with respect to the transformation which interchanges the states 5; = 1 and
5; = 2 (all other symmetries are lost as soon as one introduces the surface fields), and the
eigenvector corresponding to its largest eigenvalue belongs 10 the symmetric subspace of this
transformation. Thus we can limit curselves to matrices acting in this subspace, which are of
order (3" 4- 1)/2. In this way we have been able to deal with strips up ton = 8.

The numerical results for procedure M are reported in table 3. The extrapolation is obtained
by fitting data in a least-square sense with a second-order polynomial in 1/n. Even if now
the critical point is not given exactly by the LS approximation, we obtain excellent agreement
with the exact results (errors within 2.5%) for the bulk critical point and exponents, while, in
comparison, the resnlts for the surface exponent yys are rather poor.

Intable 4 we report the results obtained from procedure F. The gituation is different from the
previous one: the errors of the extrapolated critical point and bulk exponents are within 3.8%
and the etror for the surface exponent is within 10%. In particular, the estimate for the
surface critical exponent is comparable with the value 0.343 obtained by phenomenological
renormalization in [12]. Results from the two procedures are plotted together in figures 5-8.
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Figure 5. The three-s-tate Potts critical point K versus
1/n as given by the M (full curve) and F {braken curve)
procedures.
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Figure 7. The three-state Potts magnetic exponent yy
versus 1/n as given by the M (full curve) and F (breken
curve) procedures.
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1.19} b
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Li7t -
1.164 N .

115}
114}
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a2k
L1k

1.1

0 005 0.0 0.15 0.2 025 0.3 0.35 02 045 05
1/n

Figure 6. The three-state Potts thermal exponent yt
versus 1/n as given by the M (full curve) and F (broken
curve) procedures,

04f

0 0.05 0.1 0.05 02 0.25 0.3 0.5 04 045 05
1/n

Figure 8. The three-state Potts surface magnetic
expanent yus versus 1/n as given by the M (full curve)
and F {broken curve) procedures.

There is strong evidence that F is the correct procedure when # is large, but for small

strips M, although not rigorous, seems to work very well: indeed, if yy had been extrapolated
on the basis of the results for 2 < # € 5 one would have obtained 1.868, which is two orders
of magnitude more accurate than the extrapolation on the whole set of data.

5. Conclusions

We have analysed in some detail the L3 approximation, showing that in the two-dimensional NN
Ising case, it yields not only the exact critical point, but also the exact boundary magnetization
of the semi-infinite model, independent of the size of the strips used. We have also proposed
an explanation of these surprising results.

The LS approximation has been used to develop a new MFRG strategy (procedure M) which
yielded very accurate results for the critical exponents of the Ising and three-state Potts models
in two dimensions. When compared with rigorons ESs (procedure F) our new strategy has
proven to be particularly suitable for applications where relatively small strips are used, while
for larger strips our results indicate quite clearly that F is the correct procedure.
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